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The beam AB is supposed for the moment to have no weight.

Consequently the only force acting upon the portion of the beam
AO is the reaction R, and, similarly, R' is the only force acting

upon the portion OB. Obviously so far as the simple action of

these two forces or reactions is concerned, the tendency of each

is to cause vertical slices of the beam, so to speak, to slide over

each other. In other words, in engineering language, the por-

tion ^0 of the beam is subjected to the shear S = R, while OB
is subjected to the shear S' = —R\ The cross-sectional area of

the beam must be sufficient to resist the shear S or S\ The
upper part of Fig. 13 shaded with broken vertical lines indicates

this condition of shear. It is evident from this simple case that

the total vertical shears at the ends of any beam will be the

reactions or supporting forces exerted at those ends, and that

each will remain constant for the adjoining portion of the beam.

The third member of equation (13) shows that the greatest

bending moment M^ in the beam varies as the product x^x^

of the segments of the span. That product will have its greatest

value when Xj^=x^. Hence a simple beam loaded by a single

weight will be stibjected to the greatest possible bending moment
when the weight is placed at the middle of the span, at which point

also that moment will be found.

82. Bending Moments and Shears with any System of Loads.—
The general case of a simple beam loaded with any system of

weights whatever may be represented in Fig. 13, in which the

beam of Fig. 12 is supposed to carry three loads, w^, w^, w^. The
spacing of the loads is as shown. The reactions or supporting

forces R' are determined precisely as in Fig. 12, each reaction in

this case being the resultant of three loads instead of one. Apply-

ing the law of the lever as before, the reaction R will have the

value

R =W,^+W,i±^ + wf-±^+^. . . . (14)

A similar value may be written for R' , but it is probably

simpler, after having found one reaction, to write

R' = W,^W, + W,-R . (15)
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As Iho lH\'ini is supposed to have no weii^^lit, no load will act upon

the lK\'ini helAveen the .^ivcn weights. The bendini,^ moments,

al li)e points of appht-alion of ilie three weights or loads will be

M,=R{a I/O -ir,/>.

M.,,=R{a \b\c) ir,(/' |-c)-ir,/.

(i6)

After substituting the value of /\ from ecjuatitm (14) in equa-

tions (i()) the values of the latter are at onee known.
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Fig. 13.

The bending produeed by eaeh weight will also be represented

precisely like that in Fig. 12. The triangle ANB represents the

i)ending iirodueed by \\\; AOB the bending prcxiuccd by W./,

iind APH the bending produced by IF,. The resultant bending

effect produced bv the three loails or weights acting sinuilta-

neously is siniplv the summation of the three effeets each due to

a single load. Hence IK' is erected vertically through the pcnnt

of application oi' 11',, so as to ec]ual DN added to the two vertical

intercepts between AJ^ and AP, and .1/:? antl AO. Similarly,

HF is equal to IIO added to the intcrcc]->ts between AB and .4/^,

and .4/)' and BN. Finally, KL is equal to PL added to the other

two interce]'>ts, one between AB antl /^^'A', and the oihcv between
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A/j (ind 110. Straight lines then arc drawn through A, C, F, K,
and !'>. Any vertical intercept between AB and. ACFKB will

represent the bending moment in the beam at the corresponding

point. Obviously any number of loads of any magnitude, or

a uniform load, may l)c treated in ])rcc'isely tlic same way.

An important practical rule can readily b'c deduced from
the equations (16), each one of which may be regarded as a gen-

eral equation of moments. If the system of tlirec, or any other

number of loads, be moved a small distance Ax, while they all

remain separated by the same distances as before, the bending
moment M will be changed by the amount shown in equation
(i6a):

AM ^ RAx-WJx-WJx- etc. . . . (i6a)

If the notation of the differential calculus be used by writing the
letter d instead of A, and if, both members of equation (16a) be
then divided by dx, equation ( 1 6/;) will result

:

AM dM ,, r,r i,r . 1 / ,

.

-— = _— = /^-H/i-M^2 -etc. = shear. . (166)

The second member of this equation shows the sum of all

the external forces acting on one portion of the beam, that j)or-

tion being limited by the section about which the moment M
acts. That sum of all the external forces, as given by the second

member of equation (166), is evidently the tc^tal transverse shear

at the section considered. P>juation (166) then shows, in the

language of the differential calculus, that the first derivative of

M in respect to x is equal to the total transverse shear. Jt is

further established in the differential calculus thcit whenever a

function, such as M, the bending moment, is a maximum or a

minimum, the first derivative is equal to zero. The ^ipplication

of this principle to equation (166) shows that the bending mo-
ment in any beam or truss has its greatest value wherever the

shear is zero. Hence, in order to determine at what secticjn

the V)ending moment has its greatest value in any loaded beam
carrying a given system of loads, it is only necessary to .sum up
all the forces or loads, including the reaction A', on that beam
from one end to the point where that sum or shear is zero ; at

this latter point the greatest moment sought will be found. 'J'his
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is a verv simple method of deteniiiniiig the section at which the

srreatest moment in the beam exists.

The preceding fonnulc\? and diagrams may be extended to

include an}^ number of loads, and they are constantly used in

engineering practice, not only for beams and girders in buildings,

but also for bridges canying railroad trains. ^Yhatever may
be the number of loads, the expressions for the bending moments

at the various points of application of those loads are to be

wT-itten precisely as indicated in equations (i6). When the

number of loads becomes great the number of terms in the equa-

tions coiTespondingly increase, but in reality they are just as

simple as those for a smaller number of loads.

The diagram for the vertical shear in this beam is the loAver

part of Fig. 13. As in the case of Fig. 12 the shear at A is the

reaction R, as it is R' at the other end of the beam. The shear

in the portion AD of the beam has the value R, but in passing

the point D to the right the weight ]]\ represented by OT must

be subtracted from R, so that the shear o\-er the section b of the

span is i?-H\ or OT' in the diagi-am. Similarly, in passing the

point H toward the right, both IF, and n\ must be subtracted

from R, giving the negative shear (the previous shear being

taken positive) T'TF. The negative shear MV remains constant

throughout the distance c, but is increased by TT'3 at the point L, so

that throughout the distance d the shear S' = -R'. These shear

values are all sho^^'n in the lower portion of Fig. 13 by the vertical

shaded lines. Obviously it is a matter of indifference whether

the shear above the straight line LiJ is made positi^e or negative

;

it is only necessary to recognize that the signs are different.

In the case of heavy beams, either built or rolled, as in rail-

road structiu"es, it is of the greatest importance to detennine

both the bending moments and the shears, as represented in the

preceding equations and diagrams, and to provide sufficient metal

to resist them.

The case of Fig. 13 is perfectly general for moments and

shears, and the methods developed are applicable to any amotmt

or anv svstem of loading whatever.

830 Bending Moments and Shears with Uniform Loads.—

•

Fig. 14 represents what is really a special case of Fig. 13, in which
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the loading is utiiform for each unit of length of the beam through-

out the whole span /. Inasmuch as the load is uniformly dis-

tributed, it is evident that the reaction at each end of the beam
will be one half the total load, or

R=R' =~ (17)

Fig. 14.

The general expression for the bending moment at any point

G in the span, and located at the distance x from the end .4, will

take the form

X w
]\I =Rx-wx.- = ~x{l-x) (18)

This equation, giving the value of i\/, is the equation of a parabola

with the vertex over the middle of the span. The bending

moment at the latter point will be found by placing x = - in

equation (18), which will give

M =
-,.72

(19)

Hence, in Fig. 14, if the vertical line DC be erected at D, so as to

represent the value of M in equation (19) to a convenient scale,

the parabola ACB may be at once drawn. Any vertical inter-

cept, as GF between AB and the curve AFCB, will represent

by the same scale the bending moment in the beam at the point

indicated by the intercept. Equation (19), giving the greatest

external bending moment in a simple beam due to a uniform

load, is constantly employed in structural work, and shows that
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that moment is equal to the total load multiplied by one eighth

of the span.

It has already been shown, in connection with Fig. 12, that

when a single centre weight rests on a beam the centre bending

moment is equal to that weight multiplied by one fourth the

span. If the total uniform load in the one case is equal to the

single load in the other, these equations show that the single

centre load will produce just double the bending moment due

to the same load uniformly distributed over the span. Wherever

it is feasible, therefore, the load should be distributed rather

than concentrated at the centre of the span.

That portion of Fig. 14 shaded with vertical lines shows the

shear existing in the beam. Evidently the shear at each end is

equal to the reaction, or one half the total load on the span. The

expression for the shear at any point, as G, distant x from A will

be

S =R — wx=w[— x) (20)

If :r = - in equation (20), 5 becomes equal to zero. In other

words, there is no shear at the centre of the span of a beam uni-

formly loaded. Hence, if at each end of the span a vertical line

AK or BL be laid off downward, and if straight lines KD and

DL be drawn, any vertical intercept, as GH, between these lines

and AB will represent the shear at the corresponding point.

Equation (20) also shows that the shear S at any point is equal

to the load resting on the beam between the centre D and that

point. Although this case of uniform loading is a special one it

finds wide application in practical operations.

84. Greatest Shear for Uniform Moving Load.—The preced-

ing loads have been treated as if they were occupying fixed

positions on the beams considered. This is not always the case.

Many of the most important problems in connection with the

loading of beams and bridges arise under the supposition that the

load is movable, like that of a passing railroad train. One of the

simplest of these problems, although of much importance, con-

sists in finding the location of a uniform moving load, like that

of a train of cars, which will produce the greatest shear at a given
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point of a simple beam, such as that represented in Fig. 15, in

which a moving load is supposed to pass continuously over the
span from the left-hand end .4 . It is required to determine what
position of this uniform load will produce the greatest shear at

the section C.
R] ' c p'

^^
[-)Oonnonnnr|^nonD Ig

Fig. 15.

Let the moving load extend from A to any point D to the

right of C. The two reactions R and i?' may be found by the

methods already indicated. Let W represent the uniform load

resting on the portion CD of the span. The shear 5' existing

at C will be

S'=R'-W (21)

Let i?'" be that part of R' which is due to W, and R" that

part due to the load on AC. Evidently R'" is less than W ; then

S'=R" + R"'-W (22)

Since the negative quantity W is greater than the positive quan-
tity R"\ S' will have its greatest value when both W and R"'
are zero. Hence the greatest shear at the point C will exist

when

- S'=R'' (23)

Obviously the loading must extend at least from A to C in

order that R" may have its maximum value. Hence the greatest

shear at any section will exist when the uniform load extends from
the end of the span to that section, whatever may be the density of

the load.

If the segment of the span covered by the moving load is

greater than one half the span, the maximum shear is called

the main shear; but if that segment is less than one half the span,

the maximum shear is called the counter-shear. The reason for

these two names will be apparent later in the discussion of bridge-

trusses.

This rule for determining the maximum shear at any section

of a beam is equally applicable to bridge-trusses under certain

conditions, and has an important bearing upon the determination
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of the greatest stresses in some of the members of bridge-frames,

although it has less importance now than it had in the earlier

days of bridge building.

85. Bending Moments and Shears for Cantilever Beams.—The

case of a loaded overhanging beam or cantilever bracket, as shown

in Fig. 16, is sometimes found. In that figure a single weight W
is supposed to be applied at the end, while a uniform load w per

unit of length extends over its length /. The bending moment
at any point C distant x from the end will obviously be

M =Wx+
wx

(24)

Fig. 16.

The greatest value of the bending moment will be found by
placing X equal to / in equation (24), and it will have the value

M,=Wl+ .(25)

The shear at any point and at the end .4 respectively will be

S = W-\-wx and S^=W + n'l (26)

The shear due to W is equal to itself and is constant throughout

the whole length of the beam.

The second term of the second member of equation (24) is the

equation of a parabola with its vertex at B, Fig. 16. Hence if

wP
AF be laid off equal to — , and if the parabola FHB be drawn,

any vertical intercept, as HK, between that curve and AB will

represent the bending moment at the corresponding point. On
the other hand, the first term of the second member of equation

(24) shows that the bending moment due to W varies directly
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as the distance from B. Hence if AG be laid off vertically down-

ward from A equal to Wl to any convenient scale, then any inter-

cept, as KL, between AB and BG will represent the bending

moment due to VV at the corresponding point of the beam.

86. Greatest Bending Moment with any System of Loading.—
One of the most important positions of loading to be established

either for simple beams or for bridge-trusses is that at which

any given system of loading whatever is to be placed on any

span so as to produce the maximum bending moment at any

prescribed point in that span. In order to make the case per-

fectly general a system of arbitrary loads, like that shown in

Fig. 17, is assumed and the system is supposed to be a moving

one.

<!!^wk

Iw- >A;>^i.^^ ^ ^^(^a^b^'c-^c

Fig. 17.

The separate loads are placed at fixed distances apart, indi-

cated by the letters a, b, c, d, etc., VV^ being supposed to be at

the head of the train, while W„ is the last load having a variable

distance x between it and the end of the span. In Fig. 1 7 this

system of moving loads or train is supposed to pass over the

span / from right to left. The problem is to determine the posi-

tion of the loading, so that the bending moment at the section C
of the beam or truss will be a maximum, the section C being at

the distance /' from the left-hand end of the span. The com-

plete analysis of this problem is comparatively simple and may
readily be found, but it is not necessary for the accomplishment

of the present purpose to give it here. In order to exhibit the

formula which expresses the desired condition, let W,,' be that

weight which is really placed at C, but which is assumed to be an

indefinitely short distance to the left of that point, for a reason

which will presently be explained. The equation of condition

or criterion sought will then be the following

:

I w, + w,+w,-{- ... +w; • •• • •
w;

If the loads are so placed as to fulfil the condition expressed
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in equation (27), the bending moment at section C will be a max-
imum. If the variation in the train weights is very great, it is

possible that there may be more than one position of the train

which will satisfy that equation. It is necessary, therefore,

frequently to try different positions of the loading by that cri-

terion and then ascertain which of the resulting maximum
moments is the greatest. It is not usually necessary to make
more than one or two such trials. The application of the equa-

tion is therefore simple and involves but little labor.

It will usually happen that W„> in equation (27) is not to be

taken as the whole of that weight, but only so much of it as may
be necessary to satisfy the equation. This is simply assuming

that any weight, W, may be considered as made up of two sepa-

rate weights placed indefinitely near to each other, which is

permissible.

After having found the position of loading which satisfies

equation (27), the resulting maximum bending moment will

take the following form

:

M, = j[W,a+{W, + W,)h+ . . . +{W,-\-W,+ . . . +W„)x\

-W,a-{W,-vW,)h- . . . -{W, + W,-\- . . . -YW„,.,){1). (28)

In this equation x corresponds to the position of loading for

maximum bending, while the sign (?) represents the distance

between the concentrations W„'^^ and W„'. This equation has

a very formidable appearance, but its composition is simple and
it is constantly used in making computations for the design of

railroad bridges. The loads W^, W^, W^, etc., represent the

actual weights on the driving-axles and other axles of locomo-

tives, tenders, and cars, and the spacings a, b, c, etc., are the

actual spacings found between those axles. In other words,

these quantities are the actual weights and dimensions of the

different portions of moving railroad trains.

The computations indicated by equation (28) are not made
anew in every instance. Concentrated weights of typical loco-

motives, tenders, and cars are prescribed by different railroad

companies for their different classes of trains, ranging from the

heaviest freight traffic to the lightest passenger train. A tabu-
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lation is then made from equation (28) for each such typical

train, and it is used as frequently as is necessary to design a bridge

to carry the prescribed traffic. The tabulations thus made are

never changed for a given or prescribed loading.

87. Applications to Rolled Beams.—It is to be remembered
that these last observations do not limit the use of equations (27)

and (28) to railroad-bridge trusses only; they are equally appli-

cable to solid and rolled beams and are frequently used in connec-

tion with their design. Great quantities of these beams and
various rolled steel shapes are used in the construction of large

modern city buildings, as well as in railroad and highway bridge

structures. The steel frames of the great office buildings, so

many of which are seen in New York and Chicago as well as in

other cities, which carry the entire weight of the building, are

formed wholly of these steel shapes. The so-called handbooks
published by steel-producing companies exhibit the various

shapes rolled in each mill. These books also give in tabular

statements many numerical values of the moment of inertia,

the section modulus, and other elements of all these sections,

so that the formulse which have been established in the pre-

ceding pages may be applied in practical work with great con-

venience and little labor. Tables are also given showing the

sizes of rolled beams required to sustain the loads named in

them. Such tables are formed for practical use, so that, know-
ing the distance apart of the beams, their span, and the load

per square foot which they carry, the required size of beam may
be selected without even computation. Such labor-saving

tables are quite common at the present time, and they reduce

greatly the labor of numerical computations.

L.cfC.



CHAPTER VIIL

88. The Truss Element or Triangle of Bracing.—A number of

the preceding formulas find their apphcations to bridge-trusses,

as well as to beams; hence it is necessary to give attention at

least to some simple forms of those trusses.

The skeleton of every bridge-truss properly designed to carry

its load is an assemblage of triangles. In other words, the truss

element, i.e., the simplest possible truss, is the triangular frame,

such as is shown in skeleton in Figs. i8 and i8a. These simple

triangular frames are sometimes called the King-post Truss.

The action of such a triangular frame in carrying a vertical load

is extremely simple. In Fig. i8 let the weight W be suspended

H \o

R> Y^ "^-

'f \^
,R'

A / \^ B
'(///m

I
^ 1 ^

5:

^^^\^

1

Fig. i8a.

from the apex C of the triangle. The line CF represents that

weight, and if the latter be resolved into its two components

parallel to the two upper members of the triangular frame, the

two component forces CG and CD will result. If from D and G
the horizontal lines DH and GO be drawn, those two lines will

represent the horizontal components of the forces or stresses in

the two bars CA and CB. The force HD will act to the left at

the point A, and the force CG will act to the right at B, and as

these two forces are equal and opposite to each other, equilibrium

will result. Either of the horizontal forces will represent the

magnitude of the tension in AB. Both AC and CB will be in
100
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compression, the former being compressed by the force CD, and
the latter by the force CG. The manner of drawing a parallel-

ogram of forces makes the triangle COG similar to CNB, andCHD
similar to CNA ; hence HW divided by CH will be equal to AN
divided by iV5. But HW is the vertical component of the

stress in CB, while CH is the vertical component of the

stress in AC, the latter being represented by the reaction R and
the former by the reaction R'. It is seen, therefore, that the

weight W is carried by the frame to the two abutment supports

A and B, precisely as if it were a solid beam. In other words,

the important principle is established that when weights rest

upon a simple truss supported at each end they will produce

reactions at the ends in accordance with the principle of the

lever, precisely as in the case of a solid beam. In engineering

parlance it is stated that the weight W is divided according to

the principle of the lever,- and that each portion travels to its

proper abutment through the members of the triangular frame.

If the two inclined members of the triangular frame are equally

inclined to a vertical, the case of Fig. 1 8a results, in which one half

of the weight goes to each abutment.

The triangular frame, with equally inclined sides, shown in

Fig. 1 8a, is evidently the simplest form of roof-truss, constituting

two equally inclined members with a horizontal tie.

89. Simple Trusses.—The simplest forms of trussing used for

bridge purposes are those shown in Figs. 19, 20, and 21. There

are many other forms which are exhibited in complete treatises

on bridge structures, but these three are as simple as any, and

they have been far more used than any other types. The hori-

zontal members af and AB are called the "chords," the former

being the upper chord and the latter the lower chord. The

vertical and inclined members connecting the two chords are

called the web members or braces. When a bridge is loaded,

either by its own weight only, or by its own weight added to

that of a moving train of cars, the upper chord will evidently

be in compression, while the lower chord is in tension. A por-

tion, which may be called a half, of the web members will be in

tension and the other portion, or half, will be in compression.

The function of the upper and lower chords is to take up or
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resist the horizontal tension and compression which correspond

to the direct stresses of tension and compression existing in the

longitudinal fibres of a loaded solid or flanged beam. The metal

designed to take these so-cahed direct stresses is concentrated

in the chords of trusses, whereas it is distributed throughout the

entire section of a beam, whether that beam be solid or flanged.

The function of the web members of a truss is to resist the trans-

verse or vertical shear which is represented by the algebraic sum

of the reactions and loads. The total section of a solid beam

resists these vertical shears, while the web only of a flanged beam

is estimated to perform that duty. The horizontal shears, which

have already been recognized as existing along the horizontal

planes in a bent beam, are resisted by the inclined web members

of a truss, the horizontal stress components being the horizontal

shears, whereas the vertical shears are resisted by the vertical

web members of a truss. If the web members are all inclined,

as shown in Fig. 21, each web member resists both horizontal

and vertical shear. It is thus seen that the members of a truss

perform precisely the same duties as the various portions of

either solid or flanged beams. Inasmuch as the chords of bridge-

trusses resist the direct or horizontal stresses of tension and com-

pression produced by the bending in the truss, it is obvious that

the greatest chord stresses will be found at the centre of the

span, and that they will be the smallest at the ends of the span.

In the web members, on the contrary, since the vertical shear

is the greatest at the ends of the span and equal to the reactions

at those points, decreasing towards the centre precisely as in

solid beams, the greatest web stresses will be found at the ends

of the span and the least near the centre. It is obvious that the

areas of cross-sections of either chords or web members must
be proportioned to the stresses which they carry. Hence the

distribution of stresses just described tends to a uniform distri-

bution of the truss weights over the span.

90. The Pratt Truss Type.—In the discussion of these three

simple types of trusses, the simplest possible loading of a perfectly

uniform train will be assumed. The portions into which the trusses

are divided by the vertical or inclined bracing are called panels.

In Fig. 19, for instance, the points i, 2, 3, 4, 5, and 6 of the lower
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chord and a, b, c, d, e, and / of the upper chord are cahed panel-

points. The distance between each consecutive two of these

points is cahed a panel length. The uniform train-load which is

to be assumed will be represented by the weight W at each panel-

point. This is called the "moving load" or "live load." The
own weight of the structure is called the

'

' dead load
'

' or the

"fixed load." The dead load per upper-chord panel will be
taken as W, and W\ for the lower chord. The loads to be used
will, therefore, be as follows:

Panel moving load =W
;

Upper-chord panel dead load =W
;

Lower " " " " =W,.

There will also be used the length of panel and depth of truss as

follows

:

Panel length =p;
Depth of truss = c/.

In these simple trusses with horizontal upper and lower chords

the stress in any inclined web members is equal to the shear

multiplied by the secant of the inclination of the members to a

vertical line. Also, at each panel-point every inclined web mem-
ber, in passing from the end to the centre of the span, adds to

either chord stress at that point an amount represented by the

horizontal component of the stress which it carries ; or, what is

the same thing, an amount equal to the shear at the panel in

question multiplied by the tangent of its angle of inclination to

a vertical line.

It has already been shown in discussing solid beams that the

greatest shear at any section will be found when the uniform

moving load covers one of the segments of the span. This

principle holds equally true for trusses carrying uniform panel-

loads like those under consideration. In determining the stresses

in these trusses, therefore, the inclined w^eb members will take

their greatest stresses when the moving train or load extends

from the farthest end of the span up to the foot of the member
in question. In this connection it is to be observed also that

any two web members meeting in the chord which does not carry
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the moving load take their greatest stresses for the same posi-

tion of the latter. The so-called "counter web members" take

no stresses from the dead load.

Inasmuch as every load placed upon a truss will produce com-

pression in the upper chord and tension in the lower, the greatest

chord stresses will obviously exist when the moving load covers

the entire span, and that condition of loading is to be used for

the stresses in the following cases.

Bearing these general observations in mind, the ordinary sim-

ple method of truss analysis yields the tabulated statement of

stresses given below for the three types selected for consideration.

The first case to be treated is that of Fig. 19, which represents

the Pratt truss type. The moving load is supposed to pass

across the bridge from right to left. The plus sign indicates

tension and the minus sign compression.

a Ui & U2 c U3 d

^^^ Li 6 L2 5 L3 4 L,

Fig. 19.

Stress in c^

Stress in T
^

( ( i i n-^

^ 3

a I I
'J'

+ (i + DFTsec a=\W sec a.

+ (l+ f + f)Frsec a=-|iy sec a;

+ [(i + -|+ T+ 4)^ + W'' + ^i]seca
(j.oW+ VF' + Vrjseca;

+ [(T + T+ f+ f+ 4)l^+2w' + 2wJseca
= (J/W+ 2w' + 2wj sec a

;

Stress in P3 = - (fVT + W) ;

" " P, = -2>iW+ W' + W,)sQca.

Stress in L^ = Stress in L^= -\- t,{W -{-W + W^) tan a
;

L,= " " L2 +2(W + Vr' + M/J tana
= +5(W + T^' + T^J tana;

L,= '' " L3 +{W + W' + W,)ts.na
= +6(I^ + W' + WJtana.

( ( it

< ( (

(

( ( (

<
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Stress in 17^^ = — Stress in L^

L,

U. 6(W + W' + W^)tana.

It is easy to check any of the chord stresses by the method
of moments. As an example, let moments first be taken about

the panel-point 5 in the lower chord, and then about the panel-

point c in the upper chord. The following expressions for the

chord members U^ and L^ will be found, and it will be noticed

that they are identical with the stresses for the same members
given in the preceding tabulation, the counter-members, shown
in broken lines, being omitted from consideration as they are not

needed.

stress in U.^^^f^S^'^+^^+mP
a

= S(.W + W' + W,)^ = SiW + W' + W,) t&n a. . (29)

Stress in
^^^R-SP- ^(W +W + WJ ..jp

= 6{W + W' + W,)tana (30)
Q .

U2 c Ua d e \ f

Fig. 20.

91. The Howe Truss Type.—The truss shown in Fig. 20 is

the skeleton of the Howe truss, to which reference has already

been made. The inclined web members are all in compression,

while the vertical web members are all in tension. In the Howe
truss all compression members are composed of timber. It has

the disadvantage of subjecting the longest web members to

compression. It thus makes the truss, if built all in iron or

steel, heavier and more expensive than the trusses of the Pratt

type. As in the preceding case, the moving train or load is

supposed to pass across the bridge from B to A. Also, as before,

the + sign indicates tension and the — sign compression. The
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greatest stresses, given in the tabulated statement below, can

be computed or checked by the method of moments in this case,

precisely as in the preceding.

Stress in c^ = - {\ + ^)W sec a= - \W sec a.

Stress in P, = - {\-\-^ + ^)W sec a = -fW sec a;

" " P^=- GVW +W + H^i) sec a;

" " p^ = - {lAW+ 2W + 2WJ sec a
;

" '' P^ = -2>{W + W' + W;)seoa.

Stress in T^= + {\^-W + W^) sec a
;

" '' T^ = + {sW + 2W' + 3W,) sec a.

Stress in L, = +3(W + W' + W^) tan a
;

" " L^= -{- ^(W + W' + W,) tan a+2{W + W' + W,) tan a

= + SOV+ W' + Wi) tana;
" " L3 = + 5(W + W' + Vrj tan a+CVF + M/' + T^i) tana

^ +6(1^+ 1^' + V^i) tana;
" " L^ = Stress in L^.

Stress in U^ = — Stress in L^
;

" " [/,= - " " w.

It will be noticed in the cases of Figs. 19 and 20 that upper

and lower chord panels in the same lozenge or oblique panel have

identically the same stresses, but with opposite signs. For

instance, in Fig. 20 the stress in U^ is equal in amount to that

in L^; and the same observation can be made in reference to

the stresses in U^ and L^ of Fig. 19. This must necessarily

always be the case in trusses having vertical web members.

In making computations for these forms of trusses it is very

essential to observe where the first counter-member, as c^, must

be used. These counter-members may be omitted if the proper

main web members near the centre of the span are designed to

take both tension and compression.

92. The Simple Triangular Truss.—The truss shown in Fig.

21, in which all the web members have equal inclination to a

vertical line, is sometimes called the Warren Truss, although

that term has also been applied specially to this type of truss
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SO proportioned as to make the depth just equal to the panel

length. As before, the moving train is supposed to pass over

the bridge from B toward A , while the + sign represents tension

and the — sign compression. The greatest stresses are the

following.

a Ui 6 Us c Us d
9

^'r

-p-
i/ ff

/ \/- \=AVA /\/
/
I/\

^

^A\b
*i^| Li 6 La 5 L3 4 U

S

3 2 1
mss

Stress

(

<

in P.=

Ps-

p^ =
p,=

Fig. 21.

( -(^W + W') sec a, or

(
- (ipvr+ 1^17' + Ty,) sec a, or

\ +{^W-iiW'-W^)seca;
- (mV + 2iW' + 2Vrj sec a

;

-(3W^ +3W + 3^i)seca.

5/r^55m r - ( +(V-^ +W + T^g sec a, or

" " T^= + {i^'-W+iiW' + 2W,)seca;
" " r,= + (3^ + 21]^' + 31^J sec a.

Stress in L^ = + 3 (I'F+ VF' + T^,) tan a+ iTF' tan a

;

" " ^2 = ^^''^^•^ ^'^ L, + (5IF+ 5VT' + 5 VF,) tan a

= +8(M^+M/' + l^,) tan a+ iH^' tan a;

" " L3 = 5tr^55 ^'w L^ + 3 (H^ + H'^' + Ty,) tan a

= + ii{W-\-W' + W;) tan a+ iH'' tan a;

" " L, = 5^r^55 i;i L,+ {W + W' + W^) tan a

= + i2{W + W'-\-W,) tan a +W tan a.

Stress in U^ = -6(W + W'i-W,) tan a
;

" " u^ = -6(W + W' + W,)tcina-4iW +W + M\) tan a
' = -io(W+ W' + W,)tsina;

" " U, = - io(W + W' + W,) tan a-2(W + W' + W,) tan a

= -i2(H'^ + T^^' + H^i) tana.

The chord stresses may be checked or found by the method

of moments, precisely as in the case of Fig. 19. If, for instance,

it is desired to determine the stresses in the upper chord member
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U^, moments must be taken about the lower-chord panel-point 5,

and about the upper-chord panel-point d for the lower-chord

stress in L^. Taking moments about those points, results given

in equations (31) and (32) will at once follow, which it will be

observed are identical with the values previously found for the

same members.

Stress in U^

Stress in L, = +

{^W +ZW + ZW,) .2p- 2W'p- {W -\-W,)p
d

io{W + W' ^V[\) l^n a (31)

d

^- 1 2 (FT + VT, + PF') tan a+ il^' tan a. (32)

93. Through and Deck Bridges.—These simple trusses have
all been taken as belonging to the * * through" type, i.e., the mov-
ing load passes along their lower chords. It is quite common to

have the moving load pass along the upper chords, in which cases

the bridges are said to be "deck" structures. The general

methods of computation are precisely the same whether the

trusses be deck or through. It is only necessary carefully to

observe that the application of the methods of analysis depends
upon the position of each panel-load as it passes across the struc-

ture.

94. Multiple Systems of Triangulation.—Figs. 19, 20, and 21

exhibit what are called single systems of triangulation or single

Fig. 22.

systems of bracing, but in each of those types the system of web
members may be double or triple ; in other words, they may be
manifold. There have been many bridges built in which two
or more systems of bracing are employed. Fig. 22 represents
a truss with a double system of triangulation, known at one time
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as the Whipple truss. Fig. 23, again, exhibits a quadruple

system of triangulation with all inclined web members. The

Fig. 23.

method of computation for such manifold systems is precisely

the same as for a single system, each system in the compound
truss being treated as carrying those loads only which rest at its

panel points. This procedure is not quite accurate. The com-

plete consideration of an exact method of computation would

take the treatment into a region of rather complicated analysis

beyond the purposes of these lectures, but its outlines will be

set forth on a later page. The exact method of treatment of

two or more web systems involves the elastic properties of the

material of which the trusses are composed. In the best mod-
em bridge practice engineers prefer to design trusses of all

lengths with single web systems, although the panels are fre-

quently subdivided to avoid stringers and floor-beams of too

great weight.

95. Influence of Mill and Shop Capacity on Length of Span.—
In the early years of iron and steel bridge building the sizes of

individual members were limited by the shop capacity for hand-

ling and manufacturing, and by the relatively small dimensions

of bars of various shapes, and of plates which could be produced

by rolling-mills. As both mill and shop processes have advanced

and their capacities increased, corresponding progress has been

made in bridge design. Civil engineers have availed themselves

of those advances, so that at the present time single-system

trusses with depths as great as 85 feet or more and spans of over

550 feet are not considered specially remarkable.

96. Trusses with Broken or Inclined Chords.—As the lengths

of spans have increased certain substantial advantages have been

gained in design by no longer making the upper chords hori-
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zontal in the case of long through-spans, or indeed in the cases

of through-spans of moderate length. The greatest bending

moments and the greatest chord stresses have been shown to

exist at the centre of the span, while the greatest web stresses

are found near the ends. Trusses may be lightened in view of

those considerations by making their depths less at the ends than

at the centre. This not only decreases the sectional areas of the

heaviest web members near the ends of the truss, but also shortens

them. It adds somewhat to the sectional area of the end upper-

chord members, but the resultant effect is a decrease in total

weight of material and increased stability against wind pressure

by the decreased height and less exposure near the ends. It

has therefore come to be the ruling practice at the present time

to make through-trusses with inclined upper chords for prac-

tically all spans from about 200 feet upward. A skeleton dia-

gram of such a truss is given in Fig. 24.

A

Fig. 24.

97. Position of any Moving Load for Greatest Web Stress.—
In the preceding treatment of bridge-trusses with parallel and
horizontal chords a moving or live load has been taken as a

series of uniform weights concentrated at the panel-points.

This simple procedure was formerly generally used, and at

the present time it is occasionally employed, but it is now
almost universal practice to assume for railroad bridges a

moving load consisting of a series of concentrations, which

represent both in amount and distribution the weights on the

axles of an actual railroad train. If a bridge is supposed to be

traversed by such a train, it becomes necessary to determine

a method for ascertaining the positions of the train causing

the greatest stresses in the various members of the bridge-truss.

The mathematical demonstration of the formulae determining



CRITERIONS FOR BOTH CHORD AND WEB STRESSES. HI

those positions of loading need not be given here, but it can be
found ill almost any standard work on bridges.

In order to show concisely the results of such a demonstration
let it be desired to find the position of a moving load which will

give the greatest stress to any web member, 'as 5 in Fig. 24. Let
the point of intersection of GK and DC be found in the point 0,

then let CKhe extended, and on its extension let the perpendic-

ular h be dropped from 0. The distance of the point from A,
the end of the span, is i, while m is the distance AD. Using the

same notation which has been employed in the discussion of

beams, together with that shown in Fig. 24, equation (33) ex-

presses the condition to be fulfilled by the train-loads in order

that 5 shall have its greatest stress. The first parenthesis in

the second member of that equation represents the load between
the panel p and the left end of the span, while the second

parenthesis represents the load in panel p itself.

W, + W,+ ... +W„=--.(W, + W.,+ etc.)

pi

It will be noticed in equation (33) that the quantity m shows
in what panel the inclined web member whose greatest stress

is desired is located, and it is important to observe that panel

carefully. If, for instance, the vertical member KD were in

question, the point would be located at the intersection of

the panel A^/\ and the lower chord of the bridge. In other words,

the point O must be at the intersection of the two chord mem-
bers belonging to the same panel in which the web member is

located.

98. Application of Criterions for both Chord and Web Stresses.

—The criterion, equation (t,^), belongs to web members only.

If it is desired to find the position of moving load which will give

the greatest chord stresses in any panel, equation (27), already

established for beams, is to be used precisely as it stands, the

quantity /' representing the distance from one end of the span

to the panel-point about which moments are taken.
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If the desired positions of the moving load for greatest

stresses have been found by equations (27) and (33), those

stresses themselves are readily found by taking moments about

panel-points for chord members and about the intersection-

points 0, Fig. 24, for web members. These operations are simple

in character and are performed with great facility. Tabulations

and diagrams are made for given systems of loading by which

these computations are much shortened and which enable the

numerical work of any special case to be performed quickly

and with little liability to error. These tabulations and dia-

grams and other shortening processes may be found set forth

in detail in many publications and works on bridge structures.

They constitute a part of the office outfit of civil engineers en-

gaged in structural work.

The criterion, equation (27), for the greatest bending mo-

ments in a bridge is applicable to any truss whatever, whether

the chords are parallel or inclined, but it is not so with equation

(t,s)- I^ the chords of the trusses are parallel, the quantity i

in equation {t,t,) becomes infinitely great, and the equation takes

the following form

:

W, + W,+ ...+W„ =kw, + W, + etc.). . . (34)
P

Ordinarily the span / divided by the panel length p is equal to

the number of panels in the span. Hence equation (34) shows,

in the case of parallel or horizontal chords, that when the moving
load is placed for the greatest web stress in any panel, the total

load on the bridge is equal to the load in that panel multiplied

by the total number of panels.

99. Influence Lines.—A graphical method, known as that of

"influence lines," is used for determining the greatest shears

and bending moments caused by a train of concentrated
weights passing along a beam or bridge-truss. Obviously it

must express in essence that which has already been shown by
the formulas which determine positions of moving loads for the
greatest shears and bending moments. In reality it is the appli-

cation of graphical methods which have become so popular to

the determination of the greatest stresses in beams and bridges.
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100. Influence Lines for Moments both for Beams and Trusses.

—It is convenient to consti-uct these influence lines for an arbi-

trary load which may be considered a unit load; the effect of

any other load will then be in proportion to its magnitude. The
results determined from influence lines drawn for a load which
may be considered a unit can, therefore, be made aA^ailable for

other loads by multiplying the former by the ratio between
any desired load and that for which the influence lines are found.

Fig. 25.—Bending Moment in a Simple Beam.

AB in Fig. 25 represents a beam simply supported at each

end, so that any load g resting upon it will be divided between

the points of support, according to the law of the lever. Let

it be desired to determine the bending moment at the section X
produced by the load g in all of its positions as it passes across

the span from A to B. Two expressions for the bending moment

must be written, one for the load g at any point in AX, and the

other for the load at any point in BX. The expression for the

first bending moment is

and that for the latter

M=gj(l-x),

M'-i-^x.

(a)

As shown in the figure, z and x, the latter locating the section

at which the bending moments are to be found, are measured

to the right from A. Equation (a) shows that if the quantity

g{l-x) be laid off, by any convenient scale, as BK at right angles

to AB, XC will represent the moment AI by the same scale when

x=z or when z has any value between o and x. Similarly will
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AD be laid off at right angles to ^S by the same scale as before,

to represent gx. Then when x =z the expression for M' will have

the same value XC as before. Hence if the lines AC and CB
be drawn as parts oi AK and DB, any vertical intercept between

AB and ACB will represent the bending at X produced by the load

g when placed at the point from which the intercept is drawn.

The lines AC and CB are the influence lines for the bending

moments produced by the load g in its passage across the span

AB. It is to be observed that the influence lines are continuous

only when the positions of the moving load are consecutive. In

case those positions are not consecutive the influence lines are

polygonal in form.

If there are a number of loads g resting on the span at the

same time, the total bending moments produced at X will be

found by taking the sum of all the vertical intercepts between

AB and ACB, drawn at the various points where those loads

rest. The influence lines drawn for a single load, therefore, may
be at once used for any number of loads.

The load g is considered as a unit load. If the vertical inter-

cepts representing the bending moments by the scale used are

themselves represented by y, and if W represent any load what-

ever, the general expression for the bending moment at X, pro-

duced by any system of loads, will be

-:EWy (c)

g

If this expression be written as a series, the general value of the

bending moment will be the following:

M = ~(W,y, + W,y, + W,y, + etc.) (d)
o

The effect of a moving train upon the bending moment at

any given section is thus easily made apparent by means of

influence lines. It is obvious that there will be as many influence

lines to be drawn as there are sections to be considered. In the
case of a tniss-bridge there will be such a section at every panel

-

point.

A slight modification of the preceding results is to be made
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when the loads are apphed to the beam or truss at panel-points

only.

In Fig. 25 let i, 2, 3, 4, 5, 6, and 7 be panel-points at which

loads are applied, and let the load g be located at the distance

^' to the right of panel-point 5, also let the panel length be p.

p 0' 2'

The reactions at 5 and 6 will then be R^=g- and RQ=g—.
P P

l — z
The reactions at A will then be R=g-j- . Hence the moment

at any section A' in the panel in question will be

M=Rx~R,iz'-{z-x})=g\^^''z-iz-z' + p-x)t]^. . (e)

Remembering that z — z' is a constant quantity, it is at

once clear that the preceding expression is the equation of a

straight line, with M and z or z' the variables. If z^ =0, equation

(e) becomes identical with equation (a), while ii z' =p, it becomes

identical with equation (b). Hence the influence line for the

panel in which the load is placed, as 5-6, is the straight line KL.
It is manifest that when the load g is in any other panel than

that in which the section A' is located, the effect of the two reac-

tions at the extremities of that panel will be precisely the same

at the section as- the weight itself acting along its own line of

action. Hence the two portions AK and BL of the influence

line are to be constructed as if the load were applied directly to

the beam or truss, and in the manner already shown. The com-

plete influence line will then be AKLB, and it shows that the

existence of the panel slightly reduces the bending at any section

within its limits. The panel 5-6, as treated, is that of a beam

in which the bending moment will, in general, vary from point

to point. li AB were a truss, however, X would always be

taken at a panel-point, and no intercept between panel-points,

as 5 and 6, would be considered.

10 1. Influence Lines for Shears both for Beams and Trusses.—
The influence lines for shears in a simple beam, supported at each

end, can be drawn in the manner shown in Fig. 25a. In that

figure AB represents a non-continuous beam with span / sup-
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ported at each end and a conventional load g at the distance z

from A. The reaction at A will be

l-z

G

R =

Fig. 25a.—Shear in a Simple Beam.

Let X be the section at which the shear for various positions

of g is to be found. When g is placed at any point between A
and X the shear 5 at the latter point will be

S = R
z

_

'I'
(/)

but when the load is placed between B and X the shear becomes

S'=R=g-^
l

Qi)

Obviously these two values of the shear are equations of two

parallel straight lines, that represented by equation (/) passing

through A , and that represented by equation (h) passing through

B, the constant vertical distance between them being g. Hence
let BF be laid off negatively downward and AG positively up-

ward, each being equal to g by any convenient scale. The ordi-

nates drawn from the various positions i, 2, t, ... 6 oi g on AB
to AD and BC will be the shears at X produced by the load g
at any point of the span, and determined by equations (/) and (h).

The influence line, therefore, for the section X will be the broken
line ADCB. When g is at X the sign of the shear changes, since

the latter passes through a zero value.

If a train of weights W^, W^, W^, etc., passes across the span,

the total shear atX will be found by taking the sum of the vertical
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intercepts between AB and ADCB, drawn at the positions occu-

pied by the various single weights of the train. If those single

weights are expressed in terms of the unit load g, the shear 5
will have the value

g

y being the general value of the intercept between AB and the

influence line. The latter shows that the greatest negative

shear at A' will exist when the greatest possible amount of loading

is placed on AX only, while the greatest positive shear at the

same section will exist when BX only is loaded. If BX is the

smaller segment of span, the latter shear is called the
'

' counter-

shear,
'

' and the former the
'

' main shear.
'

'

If the loads are applied at panel-points of the span only, the

treatment is the same in general character as that employed for

bending moments. In Fig. 25a let 4 and 5 be the panel-points

between which the load g is found, and let the panel length be p.

Also, let 2' be the distance of the weight g from panel-point 4.

The reactions at ^4 and 4 will then be

R = ~r~g and R^ = ^^-^g.
i p

The shear at the section A' for any position of the weight g will

then be

S^R-R,-,{f^^\) (k)

As this is the equation of a straight line, with 5 and z or z'

for the coordinates, the influence line for the panel in which the

section A is located will be the straight line represented by KL
in Fig. 25a.

If z' is placed equal to o and p successively, then will equa-

tion (k) become identical with equations (/) and Qi) in succession.

The shears at points 4 and 5 will therefore take the same values

as if the loads were applied directly to the beam. For the reasons

stated in connection with the consideration of bending moments,

loads in other panels than that containing the section for which

the influence line is drawn will have the same effect on that sec-
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tion as if they were applied directly to the beam or truss. Hence

AKLB is the complete influence line for this case.

It is evident that there must be as many influence lines drawn

as there are sections to be discussed. Also, if g is taken as some

convenient unit, i.e., looo or 10,000 pounds, it is clear that the

labors of computation will be much reduced.

102. Application of Influence-line Method to Trusses.—In con-

sidering both the bending moments and shears when the loads

are applied at panel-points, it has been assumed, as would be

the case in an ordinary beam, that the bending moments as well

as the shears may vary in the panel; but this latter condition

does not hold in a bridge-truss. Neither bending moment nor'

shear varies in any one panel. Yet the influence lines for mo-

ments and shears are to be drawn precisely as shown in Figs. 25.

and 25a. The section X will always be found at a panel-point,

and no intercept drawn within the limits of the panel adjacent

to that section carrying the load g is to be used. This method

will be illustrated by the aid of Fig. 256.

The employment of influence lines may be illustrated by
determining the moment and shear in a single section of the:

truss shown in Fig. 24, which is reproduced in Fig. 25c, when

carrying the moving load exhibited in Fig. 256, although its use.

may be much extended beyond this simple procedure.

The moving load shown in Fig. 256 is that of a railroad train

consisting of a uniform train-load of 4000 pounds per linear foot

drawn by two locomotives with the wheel concentrations shown ;.

it is a train-load frequently used in the design of the heaviest

class of railroad structures. If the criterion of equation (27) be

applied to this moving load, passing along the truss shown in

Fig. 25c, from left to right, it will be found that the greatest-

bending moment is produced at the section Q when the second

driving-axle of the second locomotive is placed at the truss sec-

tion in question, as shown in Fig. 25 c.

The unit load to be used in connection with the influence

lines will be taken at 10,000 pounds. Remembering that the

panel lengths are each 30 feet, it will be seen that the panel-point

Q is 150 feet from A. Hence the product gx will be 1,500,000

foot-pounds. Similarly the product g{l— x) will be 900,000 foot-
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pounds. Laying off the first of these quantities, as ^D, at a scale

of 1,000,000 foot-pounds per linear inch, and the second quantity,

as BK, by the same scale, the influence line ACB can at once be

completed. Vertical lines are next to be drawn through the

positions of the various weights, including one through the centre

of the uniform train-load no feet in length resting on the truss.

The vertical line through the centre of the uniform train-load

is shown at 0. By carefully scaling the vertical intercepts be-

tween AB and ACB, and remembering that each of the loads

on the truss must be divided by 10,000, the following tabulated

statement will be obtained, the sum of the intercepts for each

set of equal weights being added into one item, and all the

items of intercepts being multiplied by 1,000,000:

DO = 8,580,000 foot-pounds.

= 4,628,000
= 8,560,000
= 970,000
= 3,965,000
= 3,600,000
= 240,000

.195X110 >:.4X

1.78 X 2.6 X
2.14 X 4 X
.485 X 2 X
I-525X 2.6 X
.9 X 4 X
.12 X 2 X

2)30>543.ooo

Moment for one truss = 15,271,500 "

The lever-arm of ef, i.e., the normal distance from Q to ef,

is 39.7 feet. Hence the stress in ef is

15,271,500

39-7
384,700 pounds.

All the chord stresses can obviously be found in the same manner.

In order to place the same moving load so as to produce the

greatest shear at the same section Q, the criterion of equation i;^^)

must be employed. The dimensions of the truss shown in con-

nection with Fig. 29 give the following data to be used in that

equation: -^' = 210 feet, m = 6o feet, and ^ = 30 feet. Hence

l(m-\-i)

pi
= IOy, Introducing these quantities into equa-

tion (33), and remembering that the train moves on to the bridge
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from A, it would be found that the second axle of the first

locomotive must be placed at the section Q, as shown m Fig.

2 5(i, which exhibits the lower-chord panel-points numbered

from I to 7. The conventional unit load g will be taken in this

case at 20,000 pounds. It is represented as AG and BF (Fig.

Fig. 25^.

Qp-.

Fig. 25^.

25(^), laid off at a scale of 10,000 pounds per inch. K is imme-

diately under panel-point 5 and L is immediately above panel-

point 6, hence the broken line AKLB is the influence line desired.

The vertical lines are then drawn from each train concentration

in its proper position, all as shown, including the vertical line

through the centre of the 54 feet of uniform train-load on the

left. The summation of all the vertical intercepts between AB
and the influence line AKL, having regard to the scale and to
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the ratio between the various loads and the unit load g, will

give the following tabular statement:

.22X54X .2X10,000= 23,760 pounds.

2.2 X 1.3X " = 28,600

3.02 X 2 X ' = 60,400

•9 X I X ' = 9,000

4.06 X I.3X ' = 53,780

4.53X 2 X ' = 90,060

•5 X I X ' = 5,000

2)270,600

Shear for one truss =135,300

These simple operations illustrate the main principles of the

method of influence lines from which numerous and useful exten-

sions may be made.



CHAPTER IX.

103. Lateral Wind Pressure on Trusses.:—The duties of a

bridge structure are not confined entirely to the supporting of

vertical loads. There are some horizontal or lateral loads of

considerable magnitude which must be resisted; these are the

wind loads resulting from wind pressure against both structure

and moving train. In order to determine the magnitudes of

these loads it is assumed in the first place that the direction of

the wind is practically or exactly at right angles to the planes of

the trusses and the sides of the cars. This assumption is essen-

tially correct. There is probably nothing else so variable as both

the direction and pressure of the wind. These variations are

not so apparent in the exposure of our bodies to the wind, for

the reason that we cannot readily appreciate even considerable

changes either in direction or pressure. As a matter of fact

suitable measuring apparatus shows that there is nothing steady

or continued in connection with the wind unless it be its incessant

variability. Its direction may be either horizontal or inclined,

or even vertical, while within a few seconds its pressure may vary

between wide limits. Under such circumstances the wind is

as likely to blow directly against both bridge and train as in any
other direction, and inasmuch as such a condition would subject

the structure to its most severe duty against lateral forces, it is

only safe and proper that the assumption should be made. The
open work of bridge-trusses enables the wind to exert practically

its full pressure against both trusses of a single-track bridge, or

against even three trusses if they are used for a double-track

structure. Hence it is customary to take the exposed surface

of bridge-trusses as the total projected area on a plane through-

out the bridge axis of both trusses if there are two, or of three
123
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trusses if there are three. Inasmuch as the floor of a bridge

from its lowest point to the top of the rails or other highest point

of the floor is practically closed against the passage of the wind,

all that surface between the lowest point and the top of the

rail or highest floor-member is considered area on which wind
pressure may act.

Many experimental observations show that on large surfaces,

greater perhaps than 400 or 500 square feet in area, the pressure

of the wind seldom exceeds 20 or 25 pounds per square foot,

while it may reach 80 or 90 pounds, or possibly more on small

surfaces of from 2 to 40 or 50 square feet in area. This dis-

tinction between small and large exposed areas in the treat-

ment of wind pressures is fundamental and shpuld never be
neglected.

This whole subject of wind pressures has not yet been brought
into a completely definite or well-defined condition through lack

of sufficient experimental observations, but in order to be at

least reasonably safe civil engineers frequently, and perhaps

usually, assume a wind pressure acting simultaneously on both

bridge and train at 30 pounds per square foot of exposed surface

and 50 pounds per square foot of the total exposed surface of a

bridge structure which carries no moving load. This distinction

arises chiefly from the fact that a wind pressure of 30 pounds

per square foot on the side of many railroad trains, particularly

light ones, will overturn them, and it would be useless to use a

larger pressure for a loaded structure. There have been wind

pressures in this country so great as to blow unloaded bridges

ofT their piers ; indeed in one case a locomotive was overturned

which must have resisted a wind pressure on its exposed surface

of not less than 90 pounds and possibly more than 100 pounds

per square foot.

The consideration of wind pressure is of the greatest impor-

tance in connection with the high trusses of long spans, as well as

in long suspension and cantilever bridges, and in the design of

high viaducts, all of which structures receive lateral wind pres-

sures of great magnitude.

Some engineers, instead of deducing the lateral wind loads

from the area of the projected truss surfaces, specify a certain
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amount for each linear foot of span, as in " The General Specifica-

tions for Steel Railroad Bridges and Viaducts
'

' by Mr. Theodore

Cooper it is prescribed that a lateral force of 150 pounds for each

foot of span shall be taken along the upper chords of through-

bridges and the lower chords of deck-bridges for all spans up to

300 feet in length; and that for the same spans a lateral force

of 450 pounds for each foot of span shall be taken for the lower

chords of through-spans and the upper chords of deck-spans, 300

pounds of this to be treated as a moving load and as acting on a

train of cars at a line 8yV feet above the base of rail.

When the span exceeds 300 feet in length each of the above

amounts of load per linear foot is to be increased by 10 poimds

for each additional 30 feet of span.

Special wind-loadings and conditions under which they are

to be used are also prescribed for viaducts.

These wind loads are resisted in the bridges on which they

act by a truss formed between each two upper chords for the

upper portion of the bridge, and between each two lower chords

for the lower portion of the structure.

A^- N M

Fig. 26.

104. Upper and Lower Lateral Bracing.—Fig. 26 shows what

are called the upper and lower lateral bracing for such trusses as

are shown in the preceding figures. The wind is supposed to

act in the direction shown by the arrow. DERA and KLBC are

the two portals at the ends of the structure, braced so as to resist

the lateral wind pressures. It will be observed that the systems

of bracing between the chords make an ordinary truss, but in a

horizontal plane, except in the case of inclined chords like that

of Fig. 24. In the latter case the lateral trusses are obviously

not in horizontal planes, but they may be considered in computa-

tions precisely as if they were. These lateral trusses are then

treated with their horizontal panel wind loads just as the vertical

trusses are treated for their corresponding vertical loads, and

the resulting stresses are employed in designing web and chord
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members precisely as in vertical trusses. The wind stresses in

the chords, in some cases, are to be added to those due to vertical

loading, and in some cases subtracted. In other words, the

resultant stresses are recognized and the chord members are

so designed as properly to resist them. At the present time

it is the tendency in the best structural work to make all the

web members of these lateral trusses of such section that they

can resist both tension and compression, as this contributes to

the general stiffness of the structure. On account of the great

variability of the wind pressures and the liability of the blows

of greatest intensity to vary suddenly, some engineers regard

all the wind load on structure or train as a moving load and
make their computations accordingly. It is an excellent prac-

tice and is probably at least as close an approximation to actual

wind effects as the assumption of a uniform wind pressure on a

structure.

Both the lateral and transverse wind bracing of railroad

bridges have other essential duties to perform than the resistance

of lateral wind pressures. Rapidly moving railroad trains pro-

duce a swaying effect on a bridge, in consequence of unavoidable

unevenness of tracks, lack of balance of locomotive driving-wheels,

and other similar influences. These must be resisted wholly by
the lateral and transverse bracing, and these results constitute

an important part of the duties of that bracing. These peculiar

demands, in connection with the lateral stability of bridges, make
it the more desirable that the lateral and transverse bracing

should be as stiff as practicable.

105. Bridge Plans and Shopwork.—After the computations

for a bridge design are completed in a civil engineer's office

they are placed in the drawing-room, where the most detailed

and exact plans of every piece which enters the bridge are

made. The numerical computations connected with this part

of bridge construction are of a laborious nature and must be

made with absolute accuracy, otherwise it would be quite

impossible to put the bridge together in the field. The various

quantities of bars, plates, angles, and other shapes required

are then ordered from the rolling-mill by means of these

plans or drawings. On receipt of the material at the shop the
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shopwork of manufacture is begun, and it involves a great variety

of operations. The bridge-shop is filled with tools and engines

of the heaviest description. Punches, lathes, planers, riveters,

forges, boring and other machines of the largest dimensions

are all brought to bear in the manufacture of the completed

bridge.

io6. Erection of Bridges.—When the shop operations are

completed the bridge members are shipped to the site where

the bridge is to be erected or put in place for final use. A timber

staging, frequently of the heaviest timbers for large spans, called

false works, is first erected in a temporary but very substantial

manner. The top of this false work, or timber staging, is of

such height that it will receive the steelwork of the bridge at

exactly the right elevation. The bridge members are then

brought onto the staging and each put in place and joined

with pins and rivets. If the shopwork has not been done with

mathematical accuracy, the bridge will not go together. On
the accuracy of the shopwork, therefore, depends the possibility

of properly fitting and joining the structure in its final position.

The operations of the shop are so nicely disposed and so accu-

rately performed that it is not an exaggeration to state that the

serious misfit of a bridge member in American engineering prac-

tice at the present time is practically impossible. This leads

to rapid erection so that the steelwork of a pin-connected

railroad bridge 500 feet long can be put in place on the timber

staging, or false works, and made safe in less than four days,

although such a feat would have been considered impossible

twenty years ago.

107. Statically Determinate Trusses. — The bridge structures

which have been treated require but the simplest analysis, based

^ ., ,..Hj. ..^ only on statical equations of equilibrium of

^"^^ ^'U''^ forces acting in one plane, i.e., the plane
'^'^

.,1V F of the truss. It is known from the science

i~al7 \ X-^x of mechanics that the number of those

!/ v,i \^ equations is at most but three for any

'""hj system of forces or loads, viz., two equa-

FiG. 27. tions of forces and one of moments.

This may be simply illustrated by the system of forces F^,
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Fo, etc., in Fig. 27. Let eacli force be resolved into its vertical

and horizontal components V and H. Also let l^, l^, etc. (not

shown in the figure), be the normals or lever-arms dropped from

any point A on the lines of action of the forces F^, F^, etc., so

that the moments of the forces about that point will be F^l^,

F^K, etc. The conditions of purely statical equilibrium are

expressed by the three general equations

H^-\-H^-\-etc.=F^QOs a^ + F^co^ a^-\-elc.=o\ . (35)

T/^+ F2 + etc. =Fi sin aj + F2 sin Cg + etc. =0; . . (36)

Ft =FJ^ + FM + etc. =0 (37)

If all the forces except three are known, obviously those three

can be found by the three preceding equations ; but if more than

three are unknown, those three equations are not sufficient to

find them. Other equations must be available or the unknown
forces cannot be found. In. modem methods of stress deter-

minations those other needed equations express known elastic

relations or values, such as deflections or the work performed

in stressing the different members of structures under loads.

A few fundamental equations of these methods will be given.

In Figs. 19, 20, and 21 let the truss be cut or divided by the

imaginary sections QS. Each section cuts but three members,

and as the loads and reactions are known, the stresses in the cut

members will yield but three unknown forces, which may be found

by the three equations of equilibrium (35), (36), (37). If more

than three members are cut, however, as in the section TV of

Figs. 22 and 23, making more than three unknown equations

to be found, other equations than the three of statical equilib-

rium must be available. Hence the general principle that if

it is possible to cut not more than three members by a section through

the truss, it is statically determinate, but if it is not possible to cut

less than four or more, the stresses are statically indeterminate.

At each joint in the truss the stresses in the members meeting

there constitute, with the external forces or loads acting at the

same point, a system in equilibrium represented by the two equa-

tions (35) and (36). If there are m such joints in the entire

structure, there will he 2m such equations by which the same

number of unknown quantities may be found. Since equilibrium
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exists at every joint in the truss, the entire truss will be in equilib-

rium, and that is equivalent to the equilibrium of all the external

forces acting on it. This latter condition is expressed by the

three equations (35), (36), and (37), and they are essentially

included in the number 27n. Hence there will remain but 2^ — 3

equations available for the determination of unknown stresses

or external forces.

If, therefore, all the external forces (loads and reactions)

are known, the 2W — 3 equations of static equilibrium can be

applied to the determination of stresses in the bars of the truss

or other structure. It follows, therefore, that the greatest num-
ber of bars that a statically determinate truss can have is

n = 2m—T, (38)

In Fig. 19 there are twelve joints and twenty-one members,
omitting counter web members and the verticals ab and //, which
are, statically speaking, either superfluous or not really bars of

the truss. Hence
m = i2 and 2m — 3=21 (39)

Again, in Fig. 2 1 there are fifteen joints. Hence

w = i5, 2w — 3 = 27,

and there are twenty-seven bars or members of the truss. The
number of joints and bars in actual, statically determinate trusses,

therefore, confirm the results.

108. Continuous Beams and Trusses—Theorem of Three Mo-
ments.—These considerations find direct application to what
are known as " continuous beams," i.e., beams (or trusses) which
reach continuously over two or more spans, as shown in Fig. 28.

w w
z-4 M. C-^-^ ^^

"7=577: www;

^|--ir-i-^--«r-#^--Z3--P

Fig. 28.

The beam shown is continuous over three spans, but a beam
or truss may be continuous over any number of spans. In gen-

eral the ends of the beam or girder may be fixed or held at the

ends A and D, so that bending moments M and M^ at the
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same points may have value. The bending moments at the

other points of support are represented by M^, M^, etc. The
points of support may or may not be at the same elevation, but
they are usually assumed to be so in engineering practice. Finally,

it is ordinarily assumed that the continuous structure is straight

before being loaded, and that in that condition it simply touches

the points of support. Whether the preceding assumptions are

made or not, a perfectly general equation can be written express-

ing the relation between the bending moments over each set

of three consecutive points of support, as M, M^, and M^, or M^,
M^, and M^. Such an equation expresses what is called the

"Theorem of Three Moments." It is not necessary to give the

most general form of this theorem, as that which is ordinarily

used embodies the simplifying assumptions already described.

This simplified form of the "Theorem of Three Moments"
applied to the case of Fig. 28 will yield the following two equa-

tions :

All, + 2M,(l, + 1,) + MJ, + j2W(l,'- z')z

-^liW{l,'-z^)z^o. (40)

^2

+ y^W(l,'-Z')Z = 0. (41)

The figure over the sign of summation shows the span to

which the summation belongs. If there is but one weight or

load W in each span, the sign of summation is to be omitted.

In an ordinary bridge structure or beam the ends are simply

supported and M ^M^^o. In any case if the number of sup-

ports be n, there will hen— 2 equations like the preceding.

If the end moments M and M^ are not zero, they will be deter-

minable by the local conditions in each instance. In any event,

therefore, they will be known, and there will be but n—2 unknown
moments to be found by the same number of equations. When
the moments are known the reactions follow from simple formulas.
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109. Application to Draw- or Swing-bridges.—In general the

reactions or supporting forces of the beams and trusses of ordi-

nary civil-engineering practice are vertical, and all their points

of application are known. Hence there are but two equations

of equilibrium, equations (36) and (37), for external forces.

These two equations for the external forces and the n — 2 equa-

tions derived from the theorem of three moments are therefore

always sufficient to determine the n reactions. After the reac-

tions are known all the stresses in the bars or members of the

trusses can at once be found. The preceding equations and

methods as described are constantly employed in the design and

construction of swing- or draw-bridges.

no. Special Method for Deflection of Trusses.—The method

of finding the elastic deflections produced by the bending of solid

beams has already been shown, but it is frequently necessary

to determine the elastic deflections of bridge-trusses or other

jointed or so-called articulate frames or structures. It is not

practicable to use the same formulae for the latter class of struc-

tures as for the former. The elastic deflection of a bridge- or

roof-truss depends upon the stretching or compressions of its

various members in consequence of the tensile or compressive

forces to which they are subjected. Any method by which the

deflection is found, therefore, must involve these elastic changes

of length. There are a number of methods which give the desired

expressions, but probably the simplest as well as the most ele-

gant procedure is that which reaches the desired expression

through the consideration of the work performed in the truss

members in producing their elastic lengthenings and shortenings.

The general features of this method can readily be shown by
reference to Fig. 29. It may be supposed that it is desired to
find the deflection of any point, as /, of the lower chord pro-
duced both by the dead and live load which it carries. It is

known from what has preceded that every member of the upper
chord will be shortened and that every member of the lower
chord will be lengthened; and also that generally the vertical
web members will be shortened and the inclined web members
lengthened. If there can be obtained an expression giving that
part of the deflection of / which is due to the change of length
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of any one member of the truss independently of the others, then

that expression may be appHed to every other member in the

entire truss, and by taking the sum of all those effects the desired

deflection will at once result. While this expression will be found

for some one particular truss member, it will be of such a general

form that it may be used for any truss member whatever; it

will be written for the upper-chord member BC in Fig, 29.

Uo D U:i E ^

8 panels@ 30'=240' c. to c. end pins

Fig. 29.

The general problem is to determine the deflection of the point

/when the bridge carries both dead and moving load over the

entire span, as shown in Fig. 29. The general plan of procedure

is first to find the stresses due to this combined load in every

member of the truss, so that the corresponding lengthening or

shortening is at once shown. The effect of this lengthening and
shortening for any single member BC in producing deflection at /
is then determined ; the sum of all such effects for every member
of the truss is next taken, and that sum is the deflection sought.

In this case the vertical deflection will be found, because that is

the deflection generally desired in connection with bridge struc-

tures, but precisely the same method and essentially the same

formulce are used to find the deflection in any direction what-

ever. The following notation will be employed

:

Let w = deflection in inches at any panel-point or joint of the

truss;

* * P = any arbitrary load or weight supposed to be hung at

the point where the deflection is desired and act-

ing as if gradually applied. This maybe taken as

unity

;

• * Z = stress produced in any member of truss by P ;

** 5* = stress produced in any member of truss by the com-

bined dead and moving loads

;
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Let / = length in inches of any member of the truss in which

Z or 5 is found

;

'
' A =area of cross-section of same member in square inches

;

" E = coefficient of elasticity.

5 or Z may be either tension or compression, and the formulae

will be so expressed that tension will be made positive and com-

pression negative.

The change of length of the chord member BC produced by a

5
stress gradually increasing from zero to 5 is — /. If it be sup-

posed that BC is a spring of such stiffness that it will be com-

pressed by the gradual application of Z exactly as much as the

shortening of the actual member by the stress 5, the deflection

of the point 4 with the weight P hung from it, and due to that

compression alone, will be precisely the same as that due to the

actual shortening of BC by the combined dead and moving loads.

It is known by one of the elementary principles of mechanics

that, since P acts along the direction of the vertical deflection w,

the work performed by the weight P over that deflection is equal

to the work performed by Z over the change of length /. Hence

-Pw = -Z~, ^, or
2 2 AE

Z SI

""^Tae ^42)

The quantity Z -^ P is the stress produced in the member by
a unit load applied at the joint or point where the deflection is

desired. Again, 5-^yl is the stress per unit of area, i.e., intensity

of stress, in the member considered by the actual dead and mov-
ing loads. For brevity let these be written

Z 5~=z and —=5;

then

E
zsl

^=^- ' ' ' (43)
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If the influence of every member of the truss is similarly ex-

pressed, the value of the total deflection produced by the dead
and moving loads will be

'^-1e
W

(44)

The sign of summation 2 indicates that the summation is to

extend over all the web and chord members of the truss.

III. Application of Method for Deflection to Triangular Frame.

—Before applying those equations to the case of Fig. 29 it is

best to consider a simpler case, i.e., that of the triangular frame

shown in Fig. 18. The reactions are

R=^jW and R' =^jW.

The stresses in the various members are

:

(45)

InCB, 5 =

" CA, S =

AB, S =

}W sec a.

W sec /?.

/.W tan ^ = -W tan a.

Also : CB =h sec a ;
area of section =A^.

CA = h sec /? ;

" " " =^2-

AB = l:
" " " =A,.

In this instance it is simplest to take P = W. Equation (44)

then gives

n.'hsec'a
,
h' h sec' jS

,

l^' I tan' l^\W ,

w =
P A,

+
P A.

+
A. )e

Let it be supposed that

/ = 2 5 feet = 300 inches

;

/? = 8 feet 4 inches = 100 inches

;

/j = 16 feet 8 inches = 200 inches and /^ = 100 inches

;

tan/? = i; sec/? = 1.414;

sec a = 2.24;

W = 10,000 pounds.
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If the bars are all supposed to be of yellow-pine timber, there

may be taken

£ = 1 ,000,000 pounds

;

Aj = 10" X 1 2" = 1 20 square inches

;

A^ = 10" X 10" = 100 square inches;

^g = io"x 12" = 120 square inches.

The insertion of these quantities in equation (46) gives the de-

flection

z£; = .01042 + .01253 + .oiiii =0".034. • • • (47)

Equation (47) is so written as to show the portion of the deflec-

tion due to each member of the frame.

In applying either equation (43) or equation (44) care must
be taken to give each stress and its corresponding strain (length-

ening or shortening) the proper sign. As the formulae have been

written and used, a tensile stress and its resulting stretch must
each be written positive, while a compressive stress must be

written negative. This holds true for both the stresses Z and 5
(or z and s). The magnitude of the assumed load P is a matter
of indifference, since the stress Z will always be proportional to

it and the ratio P ^Z will therefore be constant. P is frequently

taken as unity; or, as in the case just given, it may have any
value that the conditions of the problem make most convenient.

112. Application of Method for Deflection to Truss.—In mak-
ing application of the deflection formulae to any steel railroad

truss similar to that shown in Fig. 29, it will first be necessary

to determine the stresses in all its members due to the dead and
moving loads, since the deflection under the moving load is

sought. These loads will be considered uniform, and that is

sufficiently accurate for any railroad bridge. The moving train-

load will be taken as covering the entire span, assumed, for a
single-track railroad, 240 feet in length between centres of end
pins. There are eight panels of 30 feet each, and the depth of

truss at centre is 40 feet. Other truss dimensions are as shown
in Fig. 29. The dead loads, or own weight, are taken at 400
pounds per linear foot of span for the rails and other pieces

that constitute the track; at 400 pounds per linear foot for the
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steel floor-beams and stringers, and 1600 pounds per linear foot

for the weight of trusses and bracing. The moving train-load

will be taken at 4000 pounds per linear foot. This will make the
panel-loads for each truss as follows

:

Lower-chord dead load, 30 X 800 = 24,000 pounds per panel.

Lower-chord moving load, 30X2000 = 60,000 " " "

Totalload on lower chord =84,000 " " "
Upper-chord dead load, 30X400 = 12,000 " " "

The structure is a "through" bridge, hence all moving loads

rest on the lower chord.

Fig. 30.

The stresses in the truss members due to the combined uni-

form dead and moving load are best found by the graphical

method. One diagram only is needed to determine all the

stresses, and it is shown in Fig. 30. This diagram is drawn

accurately to scale, and the stresses measured from it are shown

in the table on page 136.

The stresses in all the truss members due to the unit load

hung at / are readily found by the single diagram shown in

Fig. 31, also carefully drawn to scale. These stresses measured

from the diagram are given in the table as indicated by the column

z ; they are also represented in equation (44) by the letter z. The
quantity .? in equation (44) is the intensity of the stress (pounds

per square inch of cross-section of member) produced by the

combined dead and moving loads in each member. As shown,
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Zj

s J- z / TU

+ 373,300 + 12,000 + •555 360 + .08563

^2 + 373,300 + 12,000 + .555 360 +.08563
/^8 4-480,000 + 12,000 + .833 360 + . 1284

^i + 540,000 + 12,000 + 1.125 360 +•1736
^1 — 502,300 — 9,000 -.748 472 +.II32
^1 — 501,000 -9.500 -.870 376 + .1108

^2 — 544,800 — 10,000 -I.I35 3f>3 + . 1472

^3 — 576,000 — 10,000 -1.50 360 + 1928
t; + 84,000

+ 143,500
+ 9,000

+ 10,000
324
472^2 + .3738 + . 0629

^2 — 12,000 — 1,000 -.250 432 + .00386
5^3 + 93,720 + 7,400 + .456 562 +.0677
^3 + 12,000 + 1,000 -35 480 — .0060

P, + 60,000 + 4, 800 + .625 600 +•0643
P. — 12,000 — 1,000 480

1

Deflection for \ truss members = 1.2300 inches.

Deflection at_/=2X 1.2300 = 2.4600 inches.

Fig. 31.

these stresses are least in the web members near the centre of the

span, and greatest in the chord members. The lengths in inches

of the truss members are shown in the proper column of the table.

It will be observed that all counter web members are omitted,

as they are not needed for the uniform load. The coefficient of

elasticity iE) is taken at 28,000,000 pounds. The quantities

represented by the second member of equation (44) are com-

puted from these data, and they appear in the last column of the

table, the sum of which gives the desired deflection in inches.

The elements of the table show how much of the deflection is due

to the chords and to the web members, and they show that dis-

regarding the latter would lead to a considerable error.

As the deflection is usually desired in inches, the lengths of

members must be taken in the same unit.




